
Intro to python and
programming concepts

BIOINF 606 - Fall 2019

Cristina Mitrea, PhD

1

Outline

• What is programming?
• Programming concepts
• What is a programming language?
• What is python?

2

• What is programming?
– Definition
– Problem solving
– Rules
– Flowcharts
– Algorithms
– Pseudocode
– Instructions for computer
– Computer code

• Binary representation

3

Programming definition

• Programming is the process of designing and building
an executable computer program for accomplishing a
specific computing task

• Instructing the computer to perform a task
• Coding is translating an algorithm in computer code
• Programming requires problem solving skills

4

Translate
Design

Problem solving

• Problem solving is the process of
identifying solutions to a complex
problem

• Largely theoretical … except
implementation
– Define the problem clearly
– Identify the cause
– Identify solutions
– Evaluate and prioritize solutions
– Implement best alternative
– Evaluate implementation

5

Rules

• In order to solve a problem you need to figure out
the rules that restrict or facilitate a solution

• What you have - input
• What you need - result
• Constrains – axioms, formulae, theorems – rules
• Steps to get from the input to the result - algorithm

6

Flowcharts

• A flowchart is a visual representation (diagram) of
the sequence of steps and decisions needed to
perform a process
– A diagrammatic representation of an algorithm
– A step-by-step approach to solving a task

7

Start Data Process Condition

Process

Process

End

YES

NO

Flowchart example

8
https://en.wikipedia.org/wiki/Flowchart#/media/File:LampFlowchart.svg

svg by Booyabazooka original png by Wapcaplet - vector version of Image:LampFlowchart.png

https://en.wikipedia.org/wiki/Flowchart
https://commons.wikimedia.org/wiki/User:Booyabazooka
https://en.wikipedia.org/wiki/User:Wapcaplet
https://commons.wikimedia.org/wiki/File:LampFlowchart.png

Algorithms

• An algorithm is a process or set of rules to be
followed in calculations or other problem-solving
operations, especially by a computer.

– Step1: Read data
– Step2: Process data and compute results
– Step3: Display/Save results

9

Algorithm example

• For 5 even numbers starting 2 multiply by 3 and then
multiply with itself. Display the resulted numbers
separated by space.

• Given:
– Start is 2
– Count is 5
– Mfactor is 3

• Result:
– 36 144 324 576 900

• How do we get from the given data to the result?
10

Algorithm example

1. Set input parameters:
1. Start is 2, Count is 5, Mfactor is 3

2. repeat Count times
1. Number is first even number
2. Multiply Number with Mfactor
3. Multiply Number with itself
4. Display Compute value and a space
5. Get next even Number

11

Pseudocode

• Pseudo code is an informal description of an
algorithm
– It is used in program design
– It can use the structural conventions of a normal

programming language
– It is intended for human reading rather than machine

reading

12

Pseudocode example

1. Start is 2, Count is 5, Mfactor is 3
2. repeat

1. Counter is 0
2. Number is Start
3. Compute is Start * Mfactor
4. Compute is Compute*Compute
5. Display Compute
6. Display ‘ ‘
7. Number is Number + 2
8. Counter is Conter + 1

3. until counter = Count 13

Translate for computer

• Algorithm –> refined to Pseudocode
• Pseudocode –> refined to very specific instructions
– Typically done during implementation

• Refined pseudocode – implemented –> translated
into programming code

• Programming code – interpreter or compiler –>
translated in to machine code

14

15

https://www.kullabs.com/classes/subjects/units/lessons/notes/note-detail/698

https://www.kullabs.com/classes/subjects/units/lessons/notes/note-detail/698

Programming code/language

• Programming languages are similar to regular written
languages

• They are formal languages
• They have vocabulary and syntax
• They evolved based on specific needs
• They rely on and have in common some basic

programming concepts
• They translate data and instructions to process the

data to the computer
– Data is stored in binary format

16

Binary representation

• The most used and well known is the base-10
representation

• Binary is a base-2 number system
• Two mutually exclusive states represent information
• States are represented by 0s and 1s

17

Base-10 Base-2

0 0

1 1

2 10

3 11

4 100

• Programming concepts
– Variable
– Data type
– Scripting
– Data structure
– Structured programming
– Functional programming
– Object-oriented programming
– Interpreter
– Compiler

18

Variable

• A variable or identifier is a label or a name given to a location in
memory that it refers to which stores a value that is assigned/
associated/given to the variable

• The variable can also be interpreted as a container (the location in
memory) where a value is stored

• The name:
– is a combination of letters in lowercase (a to z), uppercase (A to Z), digits

(0 to 9), or underscore _
– cannot start with a digit
– cannot be a vocabulary/reserved word (keyword)

• A programming language can be case sensitive so variable A and a
are not the same (python)

• Constant – variable-like: value cannot be changed once initialized
• Use a meaningful name – important for code understanding

19

value

Location in memory

Variable - rules

• A variable should be initialized – given a value – before
being used

• A variable is given/assigned a value through an
assignment operator

• An assignment statement sets and/or re-sets the value
stored at the location in memory referred/ denoted by a
variable

• In some programming languages a variable also has to be
declared

• To declare a variable means to bind it to a certain type of
value (data type)

20

Variable - rules

• The scope of a variable is the part of the code where
the variable is available to use

• The scope is typically given by the place in the code
where the variable is declared or initialized

• Inner scope can access variables initialized in an
outer scope, but not vice versa
– Analogy: federal law applies locally, state law does not

apply generally

• More about variables:
• https://en.wikipedia.org/wiki/Variable_(computer_science)

21

https://en.wikipedia.org/wiki/Variable_(computer_science)

Data type

• Data type is a classification on an attribute of the
data that tells the computer how to interpret it, store
it and how it can be used (what properties it has,
what operators can be applied)

• Data in this context is a category of values
• e.g. Numeric

• The value of a variable is associated with a data type
• 0 is Numeric

• They are programming-language specific

22

Data type

• Basic types:
– types provided as a building block
– are typically built-in – built-in support is provided for them
– python e.g.: Logical (bool), Numeric (int, float, complex),

String, List, Tuple, Dictionary
• Classic primitive/basic datatypes: character, integer,

floating-point number, boolean, reference (pointer)
• Composite data types or data structures – complex

structures derived from basic data types
• More about data types:

• https://en.wikipedia.org/wiki/Data_type

23

https://en.wikipedia.org/wiki/Data_type

Data structure

• A data structure is a data organization, management, and
storage format that enables efficient access and
modification (typically a composite type)

• E.g.: Gene Data:
• Gene_Symbol string
• Gene_Expression float

• E.g.: Linked list:
• Node

– Value int
– Link Node

• More about data structures:
• https://en.wikipedia.org/wiki/Data_structure

24

value| link

value| link

value| link value| link

https://en.wikipedia.org/wiki/Data_structure

Scripting

• Putting together a collection of statements that can
be otherwise ran one at a time

• Purpose: automation of tasks
• Scripts are interpreted just like reading a book or

following the instructions of a recipe
– E.g: command line interface (shell) scripting

• Most programming languages can be used for
scripting although their main usage is not for that

• More about scripting:
• https://en.wikipedia.org/wiki/Scripting_language

25

https://en.wikipedia.org/wiki/Scripting_language

Structured programming

• Structured or modular programming is a paradigm
that proposes features that allow for ease of
understanding and modification/maintenance of the
code

• It introduces concepts such as control structures
(decision/selection, repetition), functions, blocks,
and exception handling

• More about structured programming:
• https://en.wikipedia.org/wiki/Structured_programming

26

https://en.wikipedia.org/wiki/Structured_programming

Functional programming

• Functional programming is a paradigm that proposes
building the structure of the computer program so
that computation is treated as the evaluation of a
mathematical function (is a declarative style)

• https://en.wikipedia.org/wiki/Declarative_programming

• Looping is achieved through recursion
– A function calling itself until a termination condition is met

• F(x)={x when x=10, x+F(x+1), when x < 10)
• F(0)=0+1+2+…+9+10 = 45

• More about functional programming:
• https://en.wikipedia.org/wiki/Functional_programming

27

https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Functional_programming

Imperative programming

• Declarative programming is a paradigm
• One example/type of imperative programming is

procedural programming – promotes the use of
procedures/functions

• https://en.wikipedia.org/wiki/Procedural_programming

• Machine code (native to the computer, hardware) is
imperative

• More about imperative programming
• https://en.wikipedia.org/wiki/Imperative_programming

28

https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Imperative_programming

Object-oriented programming

• Object oriented programming is a imperative
programing paradigm that supports objects

• An object contains data and code
• Data is stored in the object variables also called fields

or attributes
• Code is stored in the object methods, which are

functions that can manage and process the data
• To be able to create multiple objects of the same

type we need a data structure that also has
meaningful functions – a class

29

Classes

• Class – defines the structure and functions for the type of
an object

• Objects – class instances – well defined all variables have
values, functions are implemented

• E.g. Gene {EntrezId string, Symbol string, ExprValue float}
GeneData {Gene gene, MeasuredValue float,
isOverExpressed()}

• To be able for the computer to understand this high-level
type of code it need to be transformed into machine
code which is done by an interpreter or a compiler

• More about object oriented programming
• https://en.wikipedia.org/wiki/Object-oriented_programming

30

https://en.wikipedia.org/wiki/Object-oriented_programming

Interpreter

• An interpreter is a program that executes the high-
level code as soon as it is given to it

• The program always needs the interpreter to run
• Need of different interpreters for different platforms
• More about interpreters:

• https://en.wikipedia.org/wiki/Interpreter_(computing)

31

https://en.wikipedia.org/wiki/Interpreter_(computing)

Compiler

• The compiler is a program that transforms source
code in machine-level language

• Generates a stand-alone program that can be ran
• The stand-alone program is called an executable
• A compiler could do:
– parsing, lexical analysis, semantic analysis, conversion to

an intermediate representation, code optimization and
code generation

• More about compilers:
• https://en.wikipedia.org/wiki/Compiler

32

https://en.wikipedia.org/wiki/Compiler

• What is a programming language?
– Definition
– How programming languages came to be
– Low-level programming language
– High-level programming languages

33

Definition

• A programming language is a formal language used
to write computer programs
– Typically used to implement algorithms

• A formal language contains words with letters from
an alphabet that are well-formed according to a set
of rules

34

Formal Language

• A formal language is composed of syntax and
semantics
– syntax – describes, in the form of a context free grammar,

the possible combinations of symbols that form a
syntactically correct program

– semantics – defines restrictions on the structure of valid
texts (e.g. declare a variable before use)

35

Grammar

• Grammar example:
• <exp> ::= <exp> "+" <exp>
• <exp> ::= <exp> "*" <exp>
• <exp> ::= "(" <exp> ")"
• <exp> ::= "a"
• <exp> ::= "b"
• <exp> ::= "c"
• https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Grammars

• More about programming languages:
• https://en.wikipedia.org/wiki/Programming_language

36

https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Grammars
https://en.wikipedia.org/wiki/Programming_language

How programming languages came to be

• Digital devices only understand binary and the
machine circuit patterns which was used by primitive
binary languages

• 1949 assembly language was created
• In early compilers, due to limited computer memory

compilation was split into several small programs
• Technological advancement led to more resources

that allowed for better compiler design and faster
compilation

https://en.wikipedia.org/wiki/Compiler

37

https://en.wikipedia.org/wiki/Compiler

38

http://wiki.sjs.org/wiki/index.php/History_of_Computers_-_Assembly_Language

http://wiki.sjs.org/wiki/index.php/History_of_Computers_-_Assembly_Language

Assembly language

• The microprocessor in a computer manages the
computer's arithmetical, logical, and control activities

• It has its own set of machine language instructions
(sequences of 0s and 1s) for operations

– getting input from keyboard
– displaying information on screen

• https://www.tutorialspoint.com/assembly_programming/assembly_introduction.htm

• Assembly language was designed to make machine
language easier to write – it has a more understandable
form a very strong correspondence to machine language

• Assembly code is translated into machine code by a
program called assembler

• https://en.wikipedia.org/wiki/Assembly_language

39

https://www.tutorialspoint.com/assembly_programming/assembly_introduction.htm
https://en.wikipedia.org/wiki/Assembly_language

Assembly advantages

• Requires less memory and execution time
• Suitable for time-critical tasks
• Capability for complex hardware-specific tasks
• Most suitable for writing code that deals with

communication with external devices

https://www.tutorialspoint.com/assembly_programming/assembly_introduction.htm

40

https://www.tutorialspoint.com/assembly_programming/assembly_introduction.htm

Low-level programming language

• Provides little or no abstraction of programming
• Is simple but not clear
• Has a steep learning curve
• E.g. Machine language and Assembly language
• Can be translated to machine code without an

interpreter or compiler
• Assembly has a processor for that – assembler
• Allow for total control over the resources
• Requires low resources

https://en.wikipedia.org/wiki/Low-level_programming_language

41

https://en.wikipedia.org/wiki/Low-level_programming_language

High-level programming language

• Provides a high abstraction of programming
• Is more complex but more clear, closer to human

language
• Easier to write, use and maintain
• Portable code
• The first wide-spread high-level language was

FORTRAN
– It was the first commercially available
– Developed by John Backus at IBM in 1954
– First FORTRAN manual was available in 1956

42

https://en.wikipedia.org/wiki/High-level_programming_language
https://www.computerscience.gcse.guru/theory/high-low-level-languages
https://en.wikipedia.org/wiki/History_of_programming_languages

https://en.wikipedia.org/wiki/High-level_programming_language
https://www.computerscience.gcse.guru/theory/high-low-level-languages
https://en.wikipedia.org/wiki/History_of_programming_languages

43

Chen, I et al.
IEEE Software
22(3):72- 79
June 2005

• What is python
– python history
– python features
– python specifics
– Modules
– Packages
– Applications

44

python history

• Guido van Rossum started implementing python in 1989
to bridge the gap between C and Bourne shell for
optimization in the Amoeba operating system

• python was developed as a successor to the ABC
programming language

• python is named after the late 60’s – early 70’s British
comedy television show Monty python’s Flying Circus

• On 2018 Guido van Rossum stepped down as leader
(Benevolent dictator for life (BDFL)) in favor of a steering
committee of 5

45

https://en.wikipedia.org/wiki/python_(programming_language)

https://en.wikipedia.org/wiki/Python_(programming_language)

python history

• python 0.9.0 - February 20, 1991
– python 0.9.1 - February, 1991
– python 0.9.2 - Autumn, 1991
– python 0.9.4 - December 24, 1991
– python 0.9.5 - January 2, 1992
– python 0.9.6 - April 6, 1992
– python 0.9.8 - January 9, 1993
– python 0.9.9 - July 29, 1993

• python 1.0 - January 1994
– python 1.2 - April 10, 1995
– python 1.3 - October 12, 1995
– python 1.4 - October 25, 1996
– python 1.5 - December 31, 1997
– python 1.6 - September 5, 2000

46

• python 2.0 - October 16, 2000
– python 2.1 - April 15, 2001
– python 2.2 - December 21, 2001
– python 2.3 - July 29, 2003
– python 2.4 - November 30, 2004
– python 2.5 - September 19, 2006
– python 2.6 - October 1, 2008
– python 2.7 - July 3, 2010

• python 3.0 - December 3, 2008
– python 3.1 - June 27, 2009
– python 3.2 - February 20, 2011
– python 3.3 - September 29, 2012
– python 3.4 - March 16, 2014
– python 3.5 - September 13, 2015
– python 3.6 - December 23, 2016
– python 3.7 - June 27, 2018
– python 3.7.4 - July 8, 2019

https://en.wikipedia.org/wiki/History_of_python

https://en.wikipedia.org/wiki/History_of_Python

python history

• python 2.0 released on 16 October 2000
– many major new features (list comprehensions)
– including a cycle-detecting garbage collector and support for

Unicode
• python 3.0 released on 3 December 2008. It was a

– major revision of the language to deal with redundancy
– not completely backward-compatible
– many of its major features were backported to python 2.6.x and

2.7.x (the last 2 of the 2.x releases)
– releases of python 3 include the 2to3 utility - automates

(partially) the of python 2 to python 3 code translation

https://en.wikipedia.org/wiki/python_(programming_language)

47

https://en.wikipedia.org/wiki/Python_(programming_language)

python history

• python 2.7's end-of-life date was initially set at 2015
then postponed to 2020 out of concern that
– Concern: a large body of existing code could not easily be

forward-ported to python 3

• In January 2017, Google announced work on a
python 2.7 to Go transcompiler to improve
performance

https://en.wikipedia.org/wiki/python_(programming_language)

48

https://en.wikipedia.org/wiki/Python_(programming_language)

python philosophy

• Some of the principles
– Beautiful is better than ugly
– Explicit is better than implicit
– Simple is better than complex
– Complex is better than complicated
– Readability counts
– In the face of ambiguity, refuse the temptation to guess
– Now is better than never.

https://en.wikipedia.org/wiki/Zen_of_python

49

https://en.wikipedia.org/wiki/Zen_of_Python

python features

• Easy to learn and to use
• Expressive
• Free and Open Source
• Object-Oriented Language
• Supports Graphical Users interfaces Programming
– GUIs can be made using PyQt5, PyQt4, wxpython or Tk

modules
– PyQt5 – the most popular

https://data-flair.training/blogs/features-of-python/
https://www.geeksforgeeks.org/python-features/

50

https://data-flair.training/blogs/features-of-python/
https://www.geeksforgeeks.org/python-features/

python features

• High-Level
• Extensible

– we can write our some python code into c or c++ language and also we
can compile that code in c/c++ language.

• Portable
• Integrated

– we can easily integrated python with other language like c, c++ etc.
• Interpreted
• Large Standard Library

– provides rich set of module and functions you can use
• Dynamically Typed

https://data-flair.training/blogs/features-of-python/
https://www.geeksforgeeks.org/python-features/

51

https://data-flair.training/blogs/features-of-python/
https://www.geeksforgeeks.org/python-features/

python features

• High-Level
• Extensible

– we can write our some python code into c or c++ language and
also we can compile that code in c/c++ language.

• Portable
• Integrated

– we can easily integrated python with other language like c, c++
etc.

• Interpreted

https://data-flair.training/blogs/features-of-python/
https://www.geeksforgeeks.org/python-features/

52

https://data-flair.training/blogs/features-of-python/
https://www.geeksforgeeks.org/python-features/

python features

• Supports Database Connectivity
– provides interface to many types of database

• Large Standard Library
– provides rich set of module and functions you can use

• Dynamically Typed
– variables are not declared type is inferred from value

• Strongly Typed
– cannot perform operations between

https://data-flair.training/blogs/features-of-python/
https://www.geeksforgeeks.org/python-features/

53

https://data-flair.training/blogs/features-of-python/
https://www.geeksforgeeks.org/python-features/

python specifics

• Blocks of code are denoted by line indentation
– strictly enforced

• Statements should be written on a single line
– \ is a line continuator – used in multi-line statements

• ; allows for multiple statements on the same line
• Single ' ' double " " and triple ''' ''', """ """ quotes

– Used for string literals (text values)
– Triples quotes are for text spanning multiple lines

• # starts a comment if not in a string
• """ (docstrings) also starts a comment that spans multiple

lines

https://www.tutorialspoint.com/python/python_basic_syntax.htm

54

https://www.tutorialspoint.com/python/python_basic_syntax.htm

python specifics

• Suite – group of individual statements that make a
block

• Compound or complex statements require a header
line and a suite
– Header line starts with a keyword and ends with :
– Keywords: if, while, def, and class

• Command line arguments

https://www.tutorialspoint.com/python/python_basic_syntax.htm

55

https://www.tutorialspoint.com/python/python_basic_syntax.htm

python specifics

• In python Everything is an object
– variables are references – names for objects
– the reference has no type
– the object has type

• In python we can do multiple assignments
– A value can be given to multiple variables at the same time

• None is used as a non value (null value)

https://www.tutorialspoint.com/python/python_basic_syntax.htm

56

https://www.tutorialspoint.com/python/python_basic_syntax.htm

python keywords

57
https://www.tutorialspoint.com/python/python_basic_syntax.htm

False
None
True
and
as
assert
async
await
break
class
continue
def

del
elif
else
except
finally
for
from
global
if
import
in
is

lambda
nonlocal
not
or
pass
raise
return
try
while
with
yield

https://www.tutorialspoint.com/python/python_basic_syntax.htm

Arithmetic operators

58
https://www.tutorialspoint.com/python/python_basic_operators.htm

Operator Meaning Description Example
+ Addition Adds values on either side of the

operator.
a + b = 30

- Subtraction Subtracts right hand operand from left
hand operand.

a – b = -10

* Multiplication Multiplies values on either side of the
operator

a * b = 200

/ Division Divides left hand operand by right hand
operand

b / a = 2

% Modulus Divides left hand operand by right hand
operand and returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation
on operators

a**b =10 to the power 20

// Floor Division The division of operands where the result
is the quotient in which the digits after
the decimal point are removed. But if
one of the operands is negative, the
result is floored, i.e., rounded away from
zero (towards negative infinity) −

9//2 = 4 and 9.0//2.0 = 4.0, -11//3 = -4, -
11.0//3 = -4.0

https://www.tutorialspoint.com/python/python_basic_operators.htm

Comparison operators

59
https://www.tutorialspoint.com/python/python_basic_operators.htm

Operator Description Example
== If the values of two operands are equal, then the condition becomes true. (a == b) is not true.

!= If values of two operands are not equal, then condition becomes true. (a != b) is true.

<> If values of two operands are not equal, then condition becomes true. (a <> b) is true.
Similar to != operator.

> If the value of left operand is greater than the value of right operand, then
condition becomes true.

(a > b) is not true.

< If the value of left operand is less than the value of right operand, then
condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of right
operand, then condition becomes true.

(a >= b) is not true.

<= If the value of left operand is less than or equal to the value of right
operand, then condition becomes true.

(a <= b) is true.

https://www.tutorialspoint.com/python/python_basic_operators.htm

Logical operators

60

Operator Meaning Description Example

and Logical AND If both the operands are
true then condition
becomes true.

(a and b) is true.

or Logical OR If any of the two operands
are non-zero then condition
becomes true.

(a or b) is true.

not Logical NOT Used to reverse the logical
state of its operand.

Not(a and b) is false.

https://www.tutorialspoint.com/python/python_basic_operators.htm

https://www.tutorialspoint.com/python/python_basic_operators.htm

Modules

• Modules are additional pieces of code that further
extend python’s functionality

• A module typically has a specific function
– additional math functions, databases, network…

• A module is a file that contains python code
– typically the file is: module_name.py

• python comes with many useful modules
• To bring the module functionality in your code
– import module_name
– from module_name import function_name

61

Packages

• Packages are directories with an __init__.py file
– the file can be empty or contain instructions to restrict

which of its module can be imported by code outside the
package

– contain packages and modules
– to import a module from a package use:

• import package_name.module_name

https://docs.python.org/3/tutorial/modules.html

62

https://docs.python.org/3/tutorial/modules.html

python has applicability in

• Web and internet applications
• Scientific and numeric computing
• Education
• Graphical User Interface-based desktop applications
• Software development
• Business applications
• Operating systems
• Programming language development

https://www.python.org/about/apps/

63

https://www.python.org/about/apps/

64

https://insights.stackoverflow.com/survey/2017

https://insights.stackoverflow.com/survey/2017

65

https://insights.stackoverflow.com/survey/2017

https://insights.stackoverflow.com/survey/2017

Who uses python?

• Google
• Quora
• Youtube
• Pinrest
• Instagram
• Amazon
• Facebook
• SurveyMonkeys

https://www.quora.com/What-are-the-features-of-python
https://www.cleveroad.com/blog/discover-5-leading-companies-that-
use-python-and-learn-does-it-fit-your-project

66

https://www.quora.com/What-are-the-features-of-python
https://www.cleveroad.com/blog/discover-5-leading-companies-that-use-python-and-learn-does-it-fit-your-project

Take home notions
the goal was to get familiar with the terminology

• Programming is fun (can be hard)
• Programing can be very useful
• It helps automate and speed up tasks
• Keys to problem solving:

– Define well the problem (input, output)
– Break down the problem in small manageable subproblems

• There is a lot of math and behind programming
• Flowcharts and generic tools that can help in algorithm

development
• Pseudocode can help reduce implementation issues

– 5 minutes of thinking can save hours of debugging time
– when stuck, take a break and come back with a fresh perspective

67

Take home notions

• Many widely used programming languages are multi-
paradigm
– C++, Java, python, etc
– they support object-oriented programming
– typically in combination with imperative, procedural

programming
• Python is a glue language that has key features that

makes it suitable for data science
– Is is generally awesome!!!

• More resources:
– http://planetpython.org/
– HOWTOS: https://docs.python.org/3/howto/index.html
– Tutorial: https://docs.python.org/3/tutorial/index.html

68

http://planetpython.org/
https://docs.python.org/3/howto/index.html
https://docs.python.org/3/tutorial/index.html

