
Version Control with Git
BIOS/BIOI/HG 606 Day 4

Hyun Min Kang
University of Michigan

Most of the lecture material was prepared by Barry Grant who is now at UCSD

What is git?

1. An unpleasant or contemptible
person. Often incompetent,
annoying, senile, elderly or
childish in character

2. A modern distributed version
control system with an emphasis
on speed and data integrity.

What is git?

1. An unpleasant or contemptible
person. Often incompetent,
annoying, senile, elderly or
childish in character

2. A modern distributed version
control system with an emphasis
on speed and data integrity.

Version Control Systems
o Version control systems (VCS) record changes to a file or set of files

over time so that you can recall specific versions later

https://en.wikipedia.org/wiki/Version_control

https://en.wikipedia.org/wiki/Version_control

Client-Server vs. Distributed VCS

Distributed version control systems (DCVS) allows multiple people to work
on a given project without requiring them to share a common network.

Subversion (SVN) :
once the most popular client-server VCS

http://tinyurl.com/distributed-advantages

http://tinyurl.com/distributed-advantages

Git is now the most popular and free VCS!

o Git offers:
§ Speed

§ Backups

§ Offline access

§ Small footprint

§ Simplicity

§ Social coding

http://tinyurl.com/distributed-advantages

http://tinyurl.com/distributed-advantages

Where did Git come from?
o Written initially by Linus Torvalds to

support Linux kernel and OS
development.

o Meant to be distributed, fast, and more
natural.

o Capable of handling large projects

o Now the most popular free VCS!
Images from Wikipedia

Why use Git?

Q. Would you write your lab book in
pencil, then erase and overwrite it
every day with new content?

Q. Would you write your lab book in
pencil, then erase and overwrite it
every day with new content?

Version control is the lab notebook of the digital world:
it’s what professionals use to keep track of what they’ve
done and to collaborate with others.

Why use Git?
o Provides ‘snapshots’ of your project during development and

provides a full record of project history.

o Allows you to easily reproduce and rollback to past versions of
analysis and compare differences.
(Note: Helps fix software regression bugs!)

o Keeps track of changes to code you use from others such as fixed
bugs & new features

o Provides a mechanism for sharing, updating and collaborating
(like a social network)

o Helps keep your work and software organized and available.

Obtaining Git

Obtaining Git

o Check if git is already installed by typing ‘git’ in your Terminal

o If absent, download and install the latest version of Git at
https://git-scm.com/downloads

https://git-scm.com/downloads

Configuring Git

Configuring Git

o First, tell git you you are
$ git config --global user.name "Hyun Min Kang"
$ git config --global user.email "hmkang@umich.edu"

o Optionally, enable terminal colors
$ git config --global color.ui true

Using Git

Getting started with Git

1. Initiate a Git repository

2. Edit content (i.e. change some files)

3. Store a ‘snapshot’ of the current file state

Initiate a Git repository

~$ cd ~/ # choose a directory to start from

~$ mkdir git_class # make a new directory

~$ cd git_class # change to the new directory

~/git_class$ git init # Our first Git command!

Initialized empty Git repository in
/Users/hmkang/git_class/.git/

~/git_class$ ls -a # What happened?

. .. .git

DO IT
YOURSELF

Side-Note: The .git/ directory

o Git created a ‘hidden’ .git/ directory inside your current working
directory

o You can use the ‘ls -a’ command to list (i.e. see) this directory and
its contents.

o This is where Git stores all its goodies – this is Git!

o You should not need to edit the contents of the .git/ directory for
now but do feel free to poke around.

Important Git commands

$ git status # report on content changes

$ git add <filename> # stage/track a file
$ git commit -m “message” # snapshot

Important Git commands

$ git status # report on content changes

$ git add <filename> # stage/track a file
$ git commit -m “message” # snapshot

You will use these three commands over and over in your Git workflow!

Git TRACKs your directory content

o To get a report of changes (since last commit), use:

$ git status

o You tell Git which files to track with:

$ git add <filename>
This adds files to so-called STAGING AREA
(akin to “shopping cart” before purchasing)

o You tell Git when to take a historical SNAPSHOT of your staged
files (i.e. record their current state) with:

$ git commit -m “message”

Example Git workflow

Create a README text file

(this starts as untracked)

Add file to STAGING AREA

(tracked and ready to take a snapshot)

Commit changes

(record snapshot of staged files!)

Example Git workflow

Create a README text file

Add file to STAGING AREA

Commit changes

Modify README and add a ToDo text file

Add both files to STAGING AREA

Commit changes

1. Create a README file

Create a new file

Check the file

Report on changes

DO IT
YOURSELF

2. Add README file to ‘staging area’
Add README file to the staging area

Report on changes

DO IT
YOURSELF

3. Commit changes

Take a snapshot

Report on changes

DO IT
YOURSELF

4. Modify README and add ToDo file
Add one more line to README

Check the contents

Create another file named ToDo

Report on changes

Check the contents

DO IT
YOURSELF

5. Add both files to ‘staging area’

Add both files in one command

Report on changes

DO IT
YOURSELF

6. Commit changes

Take a snapshot

Report on changes

DO IT
YOURSELF

Example Git workflow
Create a README text file

Add file to STAGING AREA

Commit changes

Modify README and add a ToDo text file

Add both files to STAGING AREA

Commit changes

… But, how do we see the history of our project changes?

DO IT
YOURSELF

git log : Timeline history of snapshots

git log : Timeline history of snapshots

Past

DO IT
YOURSELF

Side-note: Git history is akin to a graph

o Nodes are commits labeled by their unique
‘commit ID’.
(This is a CHECKSUM of the commits author, time,
commit msg, commit content and previous commit
ID).

o HEAD is a reference (or ‘pointer’) to the currently
checked out commit (typically the most recent
commit).

Past

c147d0c

ed1ec4e

Branching can complicate project graphs

Branches allow you to work independently of other lines of development

we will talk more about these later!

c147d0c

ed1ec4e

Master Feature BugFix

59d63f1

ab1740f

b76995f

Key points

o You explicitly and iteratively tell git what files to track (“git add”)
and snapshot (“git commit”).

o Git keeps an historical log (“git log”) of the content changes (and
your comments on these changes) at each past commit.

o It is a good practice to regularly check the status of your working
directory, staging arena repo (“git status“)

Break

Important Git commands

$ git status # report on content changes

$ git add <filename> # stage/track a file
$ git commit -m “message” # snapshot

Summary of key Git commands
$ git status # Get a status report of changes since last commit

$ git add <filename> # Tell Git which files to track/stage
$ git commit -m “message” # Take a content snapshot

$ git log # Review your commit history

$ git diff <commit.ID> <commit.ID> # Inspect content differences
$ git checkout <commit.ID> # Navigate through the commit history

git diff: Show changes between commits

Past

c147d0c

ed1ec4e

DO IT
YOURSELF

Past

c147d0c

ed1ec4e

DO IT
YOURSELFgit diff: Show changes between commits

Past

c147d0c

ed1ec4e

HEAD
Omitted second

argument implies

current “HEAD”

If first argument is omitted, it
implies the last commit

(i.e. git diff with no argument

shows uncommitted changes
since last commit)

DO IT
YOURSELFgit diff: Show changes between commits

HEAD advances automatically with changes

o To move HEAD (back or forward) on the Git
graph (and retrieve the associated snapshot
content) we can use the command:

> git checkout <commit.ID>

Past

c147d0c

ed1ec4e

HEAD

git checkout : moves HEAD

Past

c147d0c

ed1ec4e

HEAD

DO IT
YOURSELF

git checkout : moves HEAD
(e.g. back in time)

Past

c147d0c

ed1ec4e HEAD

DO IT
YOURSELF

git checkout : moves HEAD
(e.g. back to the future!)

Past

c147d0c

ed1ec4e

HEAD

DO IT
YOURSELF

Side-Note : two main ways to use git checkout

o Checking out a commit makes the entire working directory match
that commit. This can be used to view an old state of your project.

> git checkout <commit.ID>

o Checking out a specific file lets you see an old version of that
particular file, leaving the rest of your working directory untouched.

> git checkout <commit.ID> <filename>

You can discard revisions with git revert

o The git revert command undoes a committed snapshot.

o But, instead of removing the commit from the project history, it
figures out how to undo the changes introduced by the commit and
appends a new commit with the resulting content.

> git revert <commit.ID>

o This prevents Git from losing history!

Removing untracked files with git clean

o The git clean command removes untracked files from your working
directory.

o Like an ordinary rm command in UNIX, git clean is not undoable, so
make sure you really want to delete the untracked files before you run it.

git clean -n # dry run display of files to be ‘cleaned’
git clean -f # remove untracked files

GUIs

o Tower (Mac, Windows)

o GitHub_Desktop (Mac, Windows)

o SourceTree (Mac, Windows)

o SmartGit (Linux)

o RStudio

See https://git-scm.com/downloads/guis more details

https://git-scm.com/downloads/guis

Side-Note : Using Git with RStudio
o Two initial steps within Rstudio

§ Tools > Global Options > Git/SVN

§ File > New Project > New Directory > Empty Project

Summary

o Git is a popular ‘distributed’ version control system that is
lightweight and free

o Introduced basic git usage and encouraged you to adopt these ‘best
practices’ for your future projects

o Next lecture we will cover GitHub and BitBucket, two popular hosting
services for git repositories that have changed the way people
contribute to open source projects

Learning Resources

o Try Git. Overrated hands-on git tutorial in your browser.
https://try.github.io/levels/1/challenges/1

o Set up Git. If you will be using Git mostly or entirely via GitHub, look
at these how-tos.
https://help.github.com/categories/bootcamp

o Getting Git Right. Excellent Bitbucket git tutorials
https://www.atlassian.com/git/

o Pro Git. A complete, book-length guide and reference to Git, by Scott
Chacon and Ben Straub
http://git-scm.com/book/en/v2

https://try.github.io/levels/1/challenges/1
https://help.github.com/categories/bootcamp
https://www.atlassian.com/git/
http://git-scm.com/book/en/v2

