
Slides credit: Barry Grant (bjgrant@ucsd.edu)

Introduction To

Hui Jiang
jianghui@umich.edu

mailto:jianghui@umich.edu

Working with Unix
How do we actually use Unix?

Inspecting text files

• less - visualize a text file:

◦ use arrow keys

◦ page down/page up with “space”/“b” keys

◦ search by typing "/"

◦ quit by typing "q"

Also see: head, tail, cat, more•

Creating text files

Creating files can be done in a few ways:

•

•

•

With a text editor (such as nano, emacs, or vi)

With the touch command ($ touch a_file)

From the command line with cat or echo and

redirection (>)

• nano is a simple text editor that is

recommended for first-time users. Other text

editors have more powerful features but also

steep learning curves

Creating and editing

text files with nano
In the terminal type:

> nano yourfilename.txt

• There are many other text file editors (e.g. vim,

emacs and sublime text, etc.)

Finding the Right Hammer

(man and apropos)

• You can access the manual (i.e. user

documentation) on a command with man, e.g:

> man pwd

• The man page is only helpful if you know the

name of the command you’re looking for.

apropos will search the man pages for keywords.

> apropos "working directory"

Combining Utilities with

Redirection (>, <) and Pipes (|)

• The power of the shell lies in the ability to

combine simple utilities (i.e. commands) into

more complex algorithms very quickly.

• A key element of this is the ability to send the

output from one command into a file or to pass it

directly to another program.

• This is the job of >, < and |

Side-Note: Standard Input and

Standard Output streams

Two very important concepts that unpin Unix

workflows:

• Standard Output (stdout) - default destination of

a program's output. It is generally the terminal

screen.

• Standard Input (stdin) - default source of a

program's input. It is generally the command

line.

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

> ls /usr/bin | less # sdout piped to less (no file created)

>

|

Output redirection and piping

>

|

-arg

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

> ls /usr/bin | less # sdout piped to less (no file created)

> ls -l /usr/bin # extra optional input argument “-l”

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

> ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ # stderr to screen

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

> ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ > binlist.txt # stderr to screen

Output redirection and piping

>

|

2>

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

> ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ 2> binlist.txt # stderr to file

Output redirection summary
|
<

<<

-arg

|
>

>>

2>

2>>

ls -l

ls -l > list_of_files

ls -l | grep partial_name > list_of_files

We have piped (|) the stdout of one command

into the stdin of another command!

ls -l /usr/bin/ | grep “tree” > list_of_files

grep: prints lines containing a string.

Also searches for strings in text files.

Basics File Control Viewing &

Editing

Files

Misc.

useful

Power

commands

Process

related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl uniq Crl-c

ssh |

(pipe)

touch source git Crl-z

>

(write to file)

cat R bg

<

(read from file)

tmux python fg

Side-Note: grep ‘power command’

• grep - prints lines containing a string pattern. Also searches

for strings in text files, e.g.

> grep --color "GESGKS" sequences/data/seqdump.fasta

REVKLLLLGAGESGKSTIVKQMKIIHEAGYSEEECKQYK

• grep is a ‘power tool’ that is often used with pipes as it

accepts regular expressions as input (e.g. “G..GK[ST]”)

and has lots of useful options - see the man page for details.

grep example using

regular expressions

• Suppose a program that you are working with complains that

your input sequence file contains non-nucleotide characters.

You can eye-ball your file or …

> grep -v "^>" seqdump.fasta | grep --color "[^ATGC]"

Exercises:

(1). Use “man grep” to find out what

the -v argument option is doing!

(2). How could we also show line number

for each match along with the output?

(tip you can grep the output of

“man grep” for ‘line number ’)

• Suppose a program that you are working with complains that

your input sequence file contains non-nucleotide characters.

You can eye-ball your file or …

> grep -v "^>" seqdump.fasta | grep --color -n "[^ATGC]"

• First we remove (with -v option) lines that start with a “>”

character (these are sequence identifiers).

• Next we find characters that are not A, T, C or G. To do this we

use ^ symbols second meaning: match anything but the

pattern in square brackets. We also print line number (with -n

option) and color output (with --color option).

grep example using

regular expressions

Key Point: Pipes and redirects

avoid unnecessary i/o

• Disc i/o is often a bottleneck in data processing!

• Pipes prevent unnecessary disc i/o operations by

connecting the stdout of one process to the stdin of

another (these are frequently called “streams”)

> program1 input.txt 2> program1.stderr | \

program2 2> program2.stderr > results.txt

• Pipes and redirects allow us to build solutions from

modular parts that work with stdin and stdout

streams.

Unix ‘Philosophy’ Revisited

“Write programs that do one

thingand do it well. Wr ite

programs to work together and

that encourage open standards.

Wr ite programs to handle tex t

st reams, because that is a

universal interface.”

— Doug McIlory

Pipes provide speed, flexibility and

sometimes simplicity…

• In 1986 “Communications of the ACM magazine” asked famous

computer scientist Donald Knuth to write a simple program to

count and print the k most common words in a file alongside their

counts, in descending order.

• Kunth wrote a literate programming solution that was 7 pages

long, and also highly customized to this problem (e.g. Kunth

implemented a custom data structure for counting English words).

• Doug McIlroy replied with one line:

> cat input.txt | tr A-Z a-z | sort | uniq -c | sort -rn | sed 10q

Key Point:

You can chain any number of programs

together to achieve your goal!

This allows you to build up fairly complex

workflows within one command-line.

Shell scripting

! / b i n / b a s h

This i s a very s imple h e l l o wor ld s c r i p t .

echo " H e l l o ,

Exercise:

w o r l d ! ”

• Create a "Hello world"-like script using command line tools

and execute it.

• Copy and alter your script to redirect output to a file using

> along with a list of files in your home directory.

• Alter your script to use >> instead of >. What effect does

this have on its behavior?

Variables in shell scripts

! / b i n / b a s h
Another s imple h e l l o wor ld s c r i p t
message='Hello W o r l d ! '
echo $message

• “message” - is a variable to which the string 'Hello

World!' is assigned

echo - prints to screen the contents of the variable

"$message"

•

Side-Note: Environment Variables

$PATH ‘special’

environment variable

• What is the output of this command?

> echo $PATH

• Note the structure: <path1>:<path2>:<path3>

• PATH is an environmental variable which Bash

uses to search for commands typed on the

command line without a full path.

• Exercise: Use the command env to discover more.

Q. Why have we been showing you this?

• On Day-4, we will be talking about how to submit

your work to the high performance computing

cluster.

• The scripts you use to submit your work on the

cluster are basically bash shell scripts (with some

special comments read by the scheduler at the

top including instructions where to put stdout

and stderr).

Summary
• Built-in unix shell commands allow for easy data

manipulation (e.g. sort, grep, etc.)

• Commands can be easily combined to generate

flexible solutions to data manipulation tasks.

• The unix shell allows users to automate repetitive

tasks through the use of shell scripts that promote

reproducibility and easy troubleshooting

• Introduced the 21 key unix commands that you will

use during ~95% of your future unix work…

Basics File Control Viewing &

Editing

Files

Misc.

useful

Power

commands

Process

related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl uniq Crl-c

ssh |

(pipe)

touch source git Crl-z

>

(write to file)

cat R bg

<

(read from file)

python fg

Connecting to remote

machines (ssh & scp)
• Most high-performance computing (HPC) resources can

only be accessed by ssh (Secure SHell)

> ssh [user@host.address]

> ssh jianghui@scs.dsc.umich.edu

• The scp (secure copy) command can be used to copy

files and directories from one computer to another.

> scp [file] [user@host]

> scp localfile.txt jianghui@scs.scs.umich.edu:~/

mailto:user@host.address
mailto:remills@scs.gpcc.itd.umich.edu

