


DCMB BioComputing BootCamp
Day 3, Session II:

R Control Structures and 
Functions

Armand Bankhead

bankhead@umich.edu

8/21/2019



Overview

1. Working Directory

2. Reading and Writing Data in R

3. Factors

4. Using Indexes

5. Merging Data Frames

6. Functions

7. Program Control Structures



Use Directory Structure to 
Organize Your Work
• Imagine if all of your input data, 

code, output data, images files were 
all in the same directory!

• Sounds like a mess!

• There is no perfect/standard 
directory structure, but here are a 
few suggestions:

1. Create a unique directory for each 
project

2. Break your code up into parts
3. Write output (i.e. tables, images) to a 

separate sub-directory



The R Working Directory

• R executes commands from a ‘working directory’
• scripts, input files, output files

• absolute and relative directories may be specified

• Use getwd() to display current working directory
> getwd()

[1] "C:/Users/bankhead/Documents"

• Use Session->Set Working Director->Choose Directory or 
setwd() to change your working directory

> setwd("../Desktop/armandsFolder")

• Use dir() to list files and folders in your working directory

Exercise: Create a directory/folder outside of R and 
change R’s working directory to that directory



Writing Data To Text Files

• First lets create something to write as a text file
> m4 = matrix(1:300,nrow=100,ncol=3)

> colnames(m4) = c('A','B','C')

> m4 = data.frame(m4,D = c(rep('X',50),rep('Y',50)))

• Use write.table() to write data to a file
• Many arguments!  Use ?write.table to find out more

> write.table(m4, 'myData.txt', quote=F, row.names=F, sep="\t")

> dir()

[1] "myData.txt"



Reading Data From Text Files

• Use read.delim() to read data from a file

>  m5 = read.delim('myData.txt')

>  dim(m5)

>  head(m5)

• By default the first row is read in as column names

• Our data appears to be read in correctly but R has 
converted our text data into something called a 
factor

>  m5$D



Overview

1. Working Directory

2. Reading and Writing Data in R

3. Factors

4. Using Indexes

5. Merging Data Frames

6. Functions

7. Program Control Structures



Factors in R

• Factors are used to break complex data up into discrete 
categories

• This comes in handy when we need to group samples for 
statistical analysis (e.g. fitting linear models)

• Adding new values can generate errors!

• By default R will convert non-numeric data into factors
• Use options(stringsAsFactors=FALSE) in your scripts to over-ride!

>  options(stringsAsFactors = FALSE)

>  m5 = read.delim('myData.txt')

>  m5$D



Using Indexes

• Indexing is a powerful tool for filtering large data 
frames or matrices

• There are two commonly used ways to index:
1. Logical vectors:
>  m5$A < 10

[1]  TRUE  TRUE TRUE ….

2. Integer vectors:
>  which(m5$A < 10)

[1] 1 2 3 4 5 6 7 8 9



Using Indexes

• We can combine multiple conditions use the 
&, |, and parens

>  m5$A < 10 & m5$B  > 205

>  m5$A < 10 & m5$B  > 205 | m5$D == 'Y'

>  m5$A < 10 | m5$D == 'Y' & m5$A < 55 

• Be aware of operator precedence

• Use the sum command to count how many 
positive values survive

• Indexes can be used to index vectors, 
matrices, or data frames

> idx = m5$A < 10 & m5$C > 205

> subMatrix = m5[idx,]

https://www.programiz.com/r-programming/precedence-associativity



Overview

1. Working Directory

2. Reading and Writing Data in R

3. Factors

4. Using Indexes

5. Merging Data Frames

6. Functions

7. Program Control Structures



• A common programming task in bioinformatics is to 
“join” two tables:

• Joins are performed in R using the merge() function
• Requires a common column between tables (e.g. gene) be 

specified using the “by” parameter
• Multiple types of joins (e.g. inner, outer) are possible, use 

?merge to find out more

Merging Data Frames

Gene Entrez

AKT1 207

EGFR 1956

Gene RPKM

AKT1 100.03

EGFR 32.18

ZXDA 78.34 ZXDA 7789

… … … …

20,000
rows

Gene Entrez RPKM

AKT1 207 100.03

EGFR 1956 32.18

ZXDA 7789 78.34

… … …

Table X Table Y Table Z



Merging Data Frames

• Use merge() to join together data from two different 
matrices or data frames

• Important: both matrices must contain unique row 
identifiers to join on!

> df1 = data.frame(gene = c('AKT1','ERBB2','EGFR'), 
log2rpkm = c(5,.5,10))

> df2 = data.frame(gene = c('AKT1','ERBB2','EGFR'), 
entrez = c(207,2064,1956))

> combined = merge(df1,df2,by='gene')

Exercise: Execute the code above.  Using the dim() function, 
what are the number of rows and columns of the ‘combined’ 
data frame?  



Merging Data Frames: Types of 
Joins

• natural join: intersection of common rows

• full outer join: union of rows

• left outer join: all x rows represented

• right outer join: all y rows represented

https://www.dummies.com/programming/r/how-to-use-the-merge-function-with-data-sets-in-r/



Overview

1. Working Directory

2. Reading and Writing Data in R

3. Factors

4. Using Indexes

5. Merging Data Frames

6. Functions

7. Program Control Structures



Functions

• Functions allow us to break our R scripts up into modular pieces

• Modular program design has already been discussed in unix (day1) and 
python (day2)

• Benefits to our code include:
• Program design 
• Readability
• Re-use
• Trouble-shooting

• Functions are specified using the ‘function’ key word

myFunction = function(arg1,arg2,…) {

statements

}

• When multiple arguments are specified R will match first by name, 
prefix matching arguments, then by position



Function Example #1
sq1 = function(x) return(x * x)

randomValues1 = rnorm(30)

randomValues2 = sq1(randomValues1)

Exercise: Create an R script that contains the code above. How do 
randomValues1 differ from randomValeus2?



Function Example #2
sq1 = function(x) return(x * x)

randomValues1 = rnorm(30)

randomValues2 = sq1(randomValues1)

myAnalysis = function(values1,values2) {

vector1 = values1

vector2 = values2

result = cor(vector1,vector2)

}

result = myAnalysis(randomValues1, randomValues2)

print(result)

Exercise: Create an R script that contains the code above.
What correlation value is generated?



Overview

1. Working Directory

2. Reading and Writing Data in R

3. Factors

4. Using Indexes

5. Merging Data Frames

6. Functions

7. Program Control Structures



What is a Control Structure? 

• Control structures allow programmers to change 
the flow of a program

• As programmers we may want code to repeat or 
be skipped

• Example: if/else statements allow conditional 
execution of code

One single linear path Multiple branching linear paths

VS. 



Program Control Structures

• R program flow is not always a linear 
sequence of operations

• Besides functions, program flow may be 
modified using control structures

1. apply
2. if/else/else if
3. for
4. while

• Other important R commands that can 
alter program flow:

1. break – exit loop
2. next – skip to the next iteration

program flowchart

start

end



Program Control Structures:
apply
• Use the apply function to iterate through a 

data.frame, matrix, or arrays
• Use lapply() to iterate through lists or vectors

• apply function takes at least 3 values
1. data frame/matrix

2. 1 or 2 indicating rows or columns respectively

3. function to ‘apply’ to each value (standard or custom)

> m4 = matrix(1:300,nrow=100,ncol=3)

> rowMeans = apply(m4,1,mean)

> columnMeans = apply(m4,2,mean)

Exercise: Run the code above.  
What data structures are rowMeans and columnMeans?  
Are rows on average larger or columns?



Program Control Structures:
if/else/else if
• ‘if’ statements allow us to condition our program flow

• basic syntax:

if(condition) { 

statement1

}

else if(condition){

statement2

}

else {

statement3

}

• conditions must be TRUE or FALSE

• statements are a series of R commands

https://www.programiz.com/r-programming/if-else-statement



Program Control Structures:
if/else/else if
• Example if statement

m5 = read.delim('myData.txt')

if(ncol(m5) == 4 && is.factor(m5$D)) {

print('factors!')

}

else {

print('no factors!')

}

• Multiple conditions can be combined using:
• II OR
• && AND
• ! NOT
• () parens

https://www.programiz.com/r-programming/if-else-statement



Program Control Structures:
for
• ‘for’ loops allow us to iterate our code

• Basic syntax:

for(counter in vector) {

statements

}

• ‘vector’ can represent a list of numbers (e.g. 1:10) 
or arbitrary data types (e.g. c(‘mon’,’tues’,’wed’,…))



Program Control Structures:
for
• Example #1:
for(i in 1:5) {

print(i)

}

• Example #2:
m5 = read.delim('myData.txt')

for(column in 1:ncol(m5)) {

print(mean(m5[,column]))

}

• ‘break’ can be used to exit loop structure

• We could have used apply!



Program Control Structures:
while
• while() loops allow iteration until a condition is no 

longer true

• Basic syntax:

while(condition) {

statements

}

To exit the loop structure

• ‘break’ can be used to exit loop structure

• set condition to be false



Exercises 

1. Create a new script called convertDegrees.R

2. Write a function that converts Fahrenheit to Celsius
• input: temperature in Fahrenheit

• output: temperature in Celsius 

3. Write a program that builds a data frame containing 
degrees in Fahrenheit and Celsius for values of 
Fahrenheit between -30 to 130

HINT: celsius = (fahrenheit – 32) X 5/9

4.   Write the table from #2 to a tab-delimited text file



References

• Gentleman, Robert.  R Programming for 
Bioinformatics.  CRC Press, 2009.

• Slides source in part from Barry Grant and Hui Jiang



Bonus Exercise (if time!)

• The unique() function can be used to get the 
unique values in a vector

• The CO2 data set contains 84 measurements from 
an experiment comparing the C02 uptake of 
Echinochloa crus-galli sourced from Quebec and 
Mississippi.  Plants were measured chilled and 
nonchilled. 

• Using the CO2 data set determine if the average 
expression of chilled plants from Quebec is higher 
than plants from Mississippi.  


